Triple Collocation to Assess Classification Accuracy Without a Ground Truth in Case of Earthquake Damage Assessment
Abstract: The assessment of satellite image classifications is usually carried out using a test sample assumed as the ground truth, from which a confusion matrix is derived. There are cases where the reference data, even those coming from a ground survey, are affected by errors and do not represent a reliable truth. In the field of geophysical parameter retrieval, the triple collocation (TC) technique is applied for validating remotely sensed products when the source of test data (e.g., ground data) does not represent a reliable reference. TC is able to retrieve the error variances of three systems observing the same target parameter, assuming that their errors are independent. In this paper, we exploit the same idea to test the classification accuracy in cases where the ground truth is not available. We extend the TC approach to the classification problem for a general number of classes, but we solve it numerically for a two-class problem (i.e., collapsed and noncollapsed buildings). The specific case refers to the detection of L'Aquila 2009 earthquake damage from very high-resolution optical data. The image classification, performed by exploiting an object-based analysis, is compared with those from two different ground surveys carried out after the earthquake by different teams and with different purposes. This paper demonstrates the power of the TC approach for assessing the classification accuracy with no reliable ground truth available, and provides an insight into the problem of assessing damage, from satellite and on ground, in a very critical and unsafe situation, like the one occurring after an earthquake. Moreover, it was found that the remotely sensed product can have an order of accuracy comparable to that of at least one of the ground surveys.
VLSI Projects,IEEE VLSI Projects,latest vlsi projects,2018 VLSI Projects,VLSI Projects in Bangalore,VLSI projects institutes in bangalore,VLSI live projects in bangalore,VLSI academic projects,VLSI project centres,M.Tech VLSI projects in bangalore,M Tech VLSI projects institutes in bangalore,FPGA projects in bangalore,ieee vlsi,vlsi ieee papers,mtech vlsi,fpga projects using vhdl,mini project on image processing,vlsi paper,vlsi ieee papers,ieee project papers,vlsi institutes in bangalore,ofdm projects,vlsi projects using vhdl,projects based on digital signal processing,vhdl based projects,latest vlsi projects,vlsi project institutes in bangalore,VLSI Project,vlsiproject,vlsi project institute in bangalore,vlsi project idea,idea in vlsiproject,idea in vlsiprojects,idea in vlsi project,idea in vlsiprojects,M.Tech VLSI Projects in Bangalore,M.Tech FPGA Projects in Bangalore,ECE VLSI Projects in Bangalore,VLSI Academic Projects in Bangalore,VLSI Live Projects in Bangalore,VLSI Real Time Projects in Bangalore,VLSI Projects for MTech 2018,VLSI Projects for MTech 2018,VLSI Projects for MTech in Bangalore,FPGA based Projects for M.Tech,download 2018 VLSI Project list,VLSI project centre,VLSI academic projects,vlsi ieee papers,new vlsi projects,mtech vlsi,fpga projects using vhdl,mini project on image processing,vlsi paper,vlsi ieee papers,ieee project papers,vlsi institutes in bangalore,ofdm projects,vlsi projects using vhdl,projects based on digital signal processing,vhdl based projects,latest vlsi projects,vlsi project institute in bangalore,vlsi project idea,idea in vlsiproject,idea in vlsiprojects,idea in vlsi project,idea in vlsiprojects